Cross-scale controls on boreal wildfire carbon emissions

Xanthe Walker

Baltzer, J. Barrett, K. Bourgeau-Chavez, L. Brown, C. Day, J. Cumming, S. de Groot. W.J. Dieleman, C. Goetz, S. Hoy, E. Jenkins, L. Johnstone, J. Kane, E. Natali, S. Parisien, M.A. Rogers, B. Schuur, T. Turetsky, M. Veraverbeke, S. Whitman, E. Mack, M.

Photo credit: Matt Prokopchuk, CBC 2016

Boreal Forest Wildfires

• older than the stand age at the time of fire

Boreal Forest Wildfires

↑ Size, Frequency, Severity

↑ carbon emissions

Models based on top-down controls of climate and fire weather

↑ carbon emissions

Models based on top-down controls of climate and fire weather

Spatially heterogeneity in bottom-up controls of fuel availability related to topography and stand structure and composition

↑ carbon emissions

- Models based on top-down controls of climate and fire weather
- Spatially variability in bottom-up controls of fuel availability related to topography and stand structure and composition
 - Scale C emissions to the entire area burned

Δ long-term net ecosystem carbon balance

Could the intensification of wildfire disturbance shift boreal ecosystems across a C cycle threshold?

Drivers of C emissions

Scale C emissions

Legacy C combustion

Drivers of C emissions

• 417 burned plots in 6 ecoregions

Day of Burn Fine Fuel Moisture Code Duff Moisture Code Drought Code Initial Spread Index Buildup Index Fire Weather Index Daily Severity Rating

Stand Age

5 – 10 trees of the dominant species

Proportion of Black Spruce

Moisture

XERIC: Little surface moisture stabilized sand dunes and dry ridgetops

SUBXERIC: Some noticeable surface moisture; well drained slopes or ridgetops

SUBXERIC-MESIC: Very noticeable surface moisture; flat to gently sloping

MESIC: Moderate surface moisture; flat or shallow depressions including toe-slopes

MESIC-SUB-HYGRIC: Considerable surface moisture; depressions or concave toe-slopes

SUB-HYGRIC: Very considerable surface moisture; saturated with less than 5% standing water

Modified from Johnstone et al. 2008

Coars

Ð

S

<u>ŏ</u>

Texture

Aboveground

Belowground

Each tree assigned score for combustion (0-3) Allometric equations for biomass Carbon component = 50% of biomass Adventitious roots = burn depth 5 soil samples/site for C content and bulk density Modelled carbon content ~ depth

Pre-fire C pools and C combusted

Aboveground Belowground

Drivers of C emissions

Drivers of C combustion

Drivers of C combustion

Drivers of C combustion

Scale C emissions

211 burned plots in 7 burn scars and 36 unburned plots in 3 regions Total carbon combustion = $3.4 \pm 2.0 \text{ Kg C m}^{-2}$

Scale C emissions

Full Model: topographic wetness index, terrain ruggedness, dNBR, relative change in tree cover, % black spruce, and % sand in the top 15 cm of soil

Walker et al. 2018 (this study)	2.85	94.3
Veraverbeke et al. 2017	3.41	164

Differences due to:

Spatial resolution (30m vs 500m) and ability to capture small water bodies and unburned areas
Regionally specific field training data vs. training data from Alaskan black spruce sites

94.3 Tg C

= 50% annual C uptake in terrestrial ecosystems of Canada

Legacy carbon combustion

Legacy carbon combustion

- Black spruce dominated sites
 - 28 old-burned & 9 young-burned plots
- Sectioned the SOL profile
 - 0-1cm
 - 1-2 cm
 - 1cm above mineral soil
- Removed roots and filtered soil
- Δ^{14} C values

Stand age at time of fire

Legacy C is present if stand age is younger than soil base Legacy C is combusted if stand age is younger than soil surface

Legacy Carbon Presence

organic soil > 30cm

stand age <60 years

Legacy Carbon Combustion

proportion soil combusted > 50%

stand age <60 years

Legacy C Combustion

45% of young-burned plots = net C source = 0.34 Mha of forests emitted 8.6 Tg C

Legacy C Combustion

45% of young-burned plots = net C source = 0.34 Mha of forests emitted 8.6 Tg C C emissions were NOT different between sites with legacy C combustion vs. NO legacy C combustion

• C emissions controlled by bottom-up drivers

C emissions controlled by bottom-up drivers

 Scaling emissions: account for spatial heterogeneity in fuel availability and fire severity & use fine scale and regionally calibrated models

C emissions controlled by bottom-up drivers

 Scaling emissions: account for spatial heterogeneity in fuel availability and fire severity & use fine scale and regionally calibrated models

 Predicting future emissions: assess how environmental change will impact these bottom-up controls

C emissions controlled by bottom-up drivers

 Scaling emissions: account for spatial heterogeneity in fuel availability and fire severity & use regionally calibrated models

 Predicting future emissions: assess how environmental change will impact these bottom-up controls

 Measuring C emissions alone is insufficient for assessing the long-term impacts of wildfire on boreal net ecosystem carbon balance

↑ frequency of boreal forest fires
↑ proportion of younger forests vulnerable to burning
↑ expanse of forests switching into a new domain of C cycling

Drivers of C emissions

↑ frequency of boreal forest fires
↑ proportion of younger forests vulnerable to burning
↑ expanse of forests switching into a new domain of C cycling
↑ exposure of legacy C to decomposition

Legacy C loss will impact: future boreal net ecosystem carbon balance global C cycle and climate