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Cross-scale controls on boreal wildfire carbon emissions
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• older than the stand age at the time of fire
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Boreal Forest Wildfires

↑ Size, Frequency, Severity



• Models based on top-down controls of climate and fire weather
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↑ carbon emissions

• Models based on top-down controls of climate and fire weather

• Spatially variability in bottom-up controls of fuel availability related to 
topography and stand structure and composition

• Scale C emissions to the entire area burned 

∆ long-term net ecosystem carbon balance
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Could the intensification of wildfire disturbance shift
boreal ecosystems across a C cycle threshold?

Drivers of C emissions

Legacy C combustion

Scale C emissions



Drivers of C emissions

• 417 burned plots in 6 ecoregions
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Fine Fuel Moisture Code
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Initial Spread Index
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5 – 10 trees of the dominant species

Stand Age

Moisture

XERIC: Little surface moisture stabilized sand 
dunes and dry ridgetops

SUBXERIC: Some noticeable surface 
moisture; well drained slopes or ridgetops

SUBXERIC-MESIC: Very noticeable surface 
moisture; flat to gently sloping

MESIC: Moderate surface moisture; flat or 
shallow depressions including toe-slopes

MESIC-SUB-HYGRIC: Considerable surface 
moisture; depressions or concave toe-slopes

SUB-HYGRIC: Very considerable surface 
moisture; saturated with less than 5% 
standing water
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Proportion of Black Spruce



Each tree assigned score for combustion (0-3)
Allometric equations for biomass

Carbon component = 50% of biomass

Aboveground Belowground

Adventitious roots = burn depth
5 soil samples/site for C content and bulk density

Modelled carbon content ~ depth



Pre-fire C pools and C combusted



Drivers of C emissions

Fine Fuel 
Moisture Code

Total Carbon 
Combustion

Pre-fire Above 
Carbon

Pre-fire Below 
Carbon

Drought CodeDay of Burn

Stand Age

Moisture

Black Spruce 
Proportion

Top-down

Bottom-up



M-R2 = 0.36 
C-R2 = 0.44

Drivers of C combustion



M-R2 = 0.36 
C-R2 = 0.44
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Saskatchewan (n=43)

DC

Total C 
loss

Above C

Below C

FFMC

Day of 
Burn

Stand 
Age

Moisture

Black Spruce

M-R2 = 0.77 
C-R2 = 0.79

Drivers of C combustion

Bottom-up >>> Top-down



211 burned plots in 7 burn scars and 36 unburned plots in 3 regions

Total carbon combustion = 3.4 ± 2.0 Kg C m-2 

Scale C emissions



Full Model: topographic wetness index, terrain ruggedness, dNBR, relative change in tree cover, 
% black spruce, and % sand in the top 15 cm of soil

Study Area Burned(Mha) Total C emissions (Tg C)

Walker et al. 2018 (this study) 2.85 94.3

Veraverbeke et al. 2017 3.41 164

Differences due to:
1) Spatial resolution (30m vs 500m)  and ability to capture small water bodies and unburned areas

2) Regionally specific field training data vs. training data from Alaskan black spruce sites

Scale C emissions



= 50% annual C uptake in 

terrestrial ecosystems of 

Canada 

94.3 Tg C 
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Legacy Carbon in 
young-burned

Legacy carbon combustion



• Black spruce dominated sites
• 28 old-burned & 9 young-burned plots

• Sectioned the SOL profile
• 0-1cm
• 1-2 cm
• 1cm above mineral soil

• Removed roots and filtered soil
• ∆14C values
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Stand age at time of fire

Legacy C is present if stand age is younger than soil base

∆
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Legacy C is combusted if stand age is younger than soil surface



Legacy Carbon Presence

organic soil > 30cm stand age <60 years 



Legacy Carbon Combustion

proportion soil combusted > 50% stand age <60 years 



Legacy C Combustion

45% of young-burned plots = net C source

= 0.34 Mha of forests emitted 8.6 Tg C



Legacy C Combustion

45% of young-burned plots = net C source

= 0.34 Mha of forests emitted 8.6 Tg C

C emissions were NOT different between sites with                       
legacy C combustion vs. NO legacy C combustion 
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Summary & Conclusions

• C emissions controlled by bottom-up drivers

• Scaling emissions: account for spatial heterogeneity in fuel 
availability and fire severity & use regionally calibrated 

models 

• Predicting future emissions: assess how environmental 
change will impact these bottom-up controls 

• Measuring C emissions alone is insufficient for assessing the 
long-term impacts of wildfire on boreal net ecosystem 

carbon balance



Thank you



Summary & Conclusions

↑ frequency of boreal forest fires
↑ proportion of younger forests vulnerable to burning

↑ expanse of forests switching into a new domain of C cycling
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Summary & Conclusions

↑ frequency of boreal forest fires
↑ proportion of younger forests vulnerable to burning

↑ expanse of forests switching into a new domain of C cycling

↑ exposure of legacy C to decomposition

Legacy C loss will impact:
future boreal net ecosystem carbon balance 

global C cycle and climate


