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Departure (°F)

Vulnerabllity of boreal and arctic
ecosystems
Ecosystems in Alaska are facing rapid

climate change and more frequent and
severe disturbances.

Mean Annual Temperature Departure for Alaska (1949 - 2014)
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Vegetation composition

Consequences for ecosystem

Thermokarst

Elevation

structure and functions

Latitude

These environmental changes can drive ]Mﬂisture

gradual modification or precipitate abrupt
ecological shifts of ecosystems.
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Conseqguences for ecosystem services

Changes in the state of the boreal forest can drastically affect major
ecosystem services at the local and the regional scales.
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The terrestrial carbon balance of Alaska and
Projected Changes in the 21st Century
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Modeling framework
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Evaluation of Model Performance

INTERNATIONAL | L
SOIL CARBON NETWORK

100

80

80

70

60
< Black spruce forest
50 .
B White spruce forest

40 Deciduous forest

0 M Shrub tundra

Modeled soil C (kgC/m2)

< Tussock tundra
20

Wetsedge tundra
10

0 10 20 30 40 50 60 70 20 90 100
Observed soil C (kgC/m2)

TEM soil C stocks compared with soil C stocks based
on 315 samples collected in Alaska (Johnson et al.
2011). Both simulated and observed soil C stock
estimates are for the organic and 0-1m mineral
horizons.
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Evaluation of TEM for vegetation biomass using
data from 190 permanent study plots of the
Cooperative Alaska Forest Inventory (CAFI) for
boreal forest communities and LTER data for the

arctic tundra communities.

(Genet et al. 2018)




The historical carbon balance assessment
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Projected change in the ecosystem C dynamic
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(McGuire et al. submitted)

[ sequestration of upland and wetland ecosystems was
projected to increase substantially (22.5 to 70.0 Tg C yr).

Wetland biogenic methane emissions increased by 47.7%
on average across the projections, compare to the
historical period.

[ dynamics of upland and wetland ecosystems were
projected to continue to warm the climate for four of the
future projections, and cool the climate for two of the
projections.
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Attribution analysis of the environmental
drivers of changes in C dynamic
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e The response of NPP to rising atmospheric GO, (~a% per 100
ppmv Gl,) saturates as GO, increases.

« The decreasing sensitivity of NPP to atm. 00, and the linear
sensitivity of heterotrophic respiration and wetland methane
emissions to air/soil temperature, and soil moisture, in
addition to the increase in C loss from wildfires weakens the C
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- This response, along with the expectation that permafrost
thaw would be much greater and release large quantities of
permafrost carbon after 2100, suggests that projected C
sequestration in upland and wetland ecosystems of Alaska may
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Modeling thermokarst dynamic in the boreal
forest

- The Alaska Thermokarst model is a state-and-transition model
developed to track land cover change resulting from thermokarst
disturbance.
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The environmental drivers of thermokarst
disturbance

- Evaluation of long-term land cover change in
unburned boreal forest, from 1949 to 2009 using
repeated imagery analysis.

Lara et al. 2016
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Consedquences of thermokarst on land cover

- Model application from 1950 to 2100 in
the Tanana Flats (~2,600 km?).

- Land cover initialization — NLCD 2001

- Historical backward simulations [1950-2000]
- CRUTS3.2
- Model verification and validation

- Future projections [2001-2100]

- Four AR5 emission scenarios (RCP 2.6,
4.5, 6.0 and 8.5)

- Five climate models (CCSM4, GISS-E2, - " e
MRI-CGC, GFDL-CM, IPSL-CM) o w0 @ 40 kometers




Consequences of thermokarst on land cover

- Comparison between observed and modeled rates of loss of permafrost
plateau in 15 verification plots and 10 validation plots from 1950 to 2009.
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Consedquences of thermokarst on land cover

- The proportion of wetlands in the Tanana Flats increased by 26.5%
(s.d. 7.2%) from 1950 to 2100, i.e. ~ 36,000 ha.
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Toward the representation of thermokarst
disturbance in ecosystem model

- The Alaska thermokarst model was asynchronously coupled with a process-based
ecosystem model that simulate the response of vegetation and soil C and N dynamics to
climate, atmospheric CO, and fire disturbance.
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Implications for the regional carbon balance

- Alaska Peatland Experiment started in 2004 in the Tanana Flats.
Sites were monitored to assess the effects of drought, flooding,
and soil warming on peatland vegetation, greenhouse gas
fluxes, and hydrology.

- Eddy covariance estimates of GPP and ER, and quantification
of vegetation biomass and soil C and N stocks were used to
calibrate the rate limiting parameters of TEM.

value value
GPP (g C m2 yr?) 530 572
NPP (g C m?2 yr1) 297 324
Vegetation C (g m2) 536 514
Fibric C (g m2) 6029 6048

Amorphous C (g m?2) 40300 33269
Fibric horizon thickness (m) 0.33 0.12
Amorphous horizon thickness

(m)
CH4 flux (mg m-=2

0.9 0.66
4981 3800




Evaluating the effect of fire on thermokarst
disturbances

Repeated imagery analysis in the Yukon
Flats to assess the impact of wildfire on
thermokarst and associated land cover
change.
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