Mapping, Monitoring and Modeling Changes in the North American Boreal Biome

Scott Goetz (and collaborators)

Bonanza Creek LTER Annual Symposium April 2018

from Appenzeller "The New North" article in Science (Aug 2015)

Greening & Browning of "The New North"

AVHRR GIMMS 3G Growing Season NDVI Trends

> 8 km res 1982 – 2014

In some Boreal forest areas satellite observed productivity declines with warming & drying (drought / high VPD)

Significant (p<0.05) Greening & Browning trends in areas with >20% tree cover

Ecology Letters

Ecology Letters, (2011) 14: 373-379

LETTER

Changes in forest productivity across Alaska consistent with biome shift

Pieter S. A. Beck, ¹* Glenn P. Juday,² Claire Alix,³ Valerie A. Barber,² Stephen E. Winslow,² Emily E. Sousa,² Patricia Heiser,² James D. Herriges⁴ and Scott J. Goetz¹

- *Circles represent white spruce & triangles black spruce stands.*
- Open symbols are locations where fire disturbance (burning and regrowth after 1950) took place.
- *Red indicates where the series trend was significantly different from zero* (0.05).

doi: 10.1111/j.1461-0248.2011.01598.x

No growth stimulation of Canada's boreal forest under half-century of combined warming and CO₂ fertilization

Martin P. Girardin^{a,1}, Olivier Bouriaud^{b,2}, Edward H. Hogg^b, Werner Kurz^c, Niklaus E. Zimmermann^{d,e}, Juha M. Metsaranta^b, Rogier de Jong^f, David C. Frank^{d,g}, Jan Esper^h, Ulf Büntgen^{d,i}, Xiao Jing Guo^a, and Jagtar Bhatti^b

^aLaurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec, QC, Canada G1V 4C7; ^bNorthern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, AB, Canada T6H 3S5; ^cPacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada V8Z 1M5; ^dLandscape Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf, Switzerland; ^eDepartment of Environmental Systems Sciences, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland; ^fRemote Sensing Laboratories, University of Zurich, CH-8057 Zurich, Switzerland; ^gLaboratory of Tree-Ring Research, University of Arizona, Tucson, AZ 85721; ^hDepartment of Geography, Johannes Gutenberg University, 55099 Mainz, Germany; and ⁱOeschger Centre for Climate Change Research, 3012 Bern, Switzerland

Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved November 7, 2016 (received for review June 22, 2016)

Some areas of the NA boreal forest biome are not greening, but browning (declining in productivity)

Change in annual probability of mortality (% year) 1951–2014

Inferred from the slope of OLS regression fit to the annual time series of gridded predictions (8.1 million mmts of change at 46,000 plots)

Hember et al. 2016 GCB

"Temporal variability in the mortality predictions across North America was strongly shaped by extreme droughts in 1981, 1988, 1998, 2006, 2007 and 2012"

Detecting precursors of tree mortality in boreal North America using multi-scale satellite data

Negative jump (episodic drought inciting stress)

Rogers et al. (2018) Global Change Biology

"Early warning" metrics common at high mortality levels and relatively long time windows before death

Results are broadly consistent across forest inventories, tree species, early warning metrics, and satellite sensors (Landsat, MODIS, and AVHRR)

Ongoing work to integrate thousands more field plots across Canada and develop forecasting models that combine NDVI and climate predictors

The composition of boreal forest post-fire depends on the severity of burning

Greater burn severity results in more deciduous tree cover – composition changes persist for decades

Several decades of research on this topic – remote sensing brought to bear in past two decades. Ongoing projects documenting aspects & implications of boreal post-fire succession

ATTRIBUTION OF CHANGING SPECTRAL INDICES

CHRONOSEQUENCE:

- WILDFIRE, HARVESTING, AND INSECT DAMAGE
- GENERALIZED ADDITIVE MODELS (GAMS) NDVI **NDWI** NDII YEAR SINCE FIRE: YEAR SINCE HARVEST: 2000 to 2015 1940 to 1960 1960 to 1980 1980 to 2000 1940 to 1960 1960 to 1980 1980 to 2000 2000 to 2015 0.006 $R^{2}_{ADJ} = 0.78$ $R^{2}_{ADJ} = 0.95$ 0.004 0.005 0.002 (unit NDVI) ā 0.000 -0.002 -0.005 --0.004 10 20 30 40 50 60 20 60 0 40 Year since fire Year since harvest

Pastick et al. Global Change Biology, in press.

Severe Fire Disturbance Changes Boreal Composition altering Energy, Carbon & Water cycles

DECIDUOUS

Linked Energy, Carbon & Water exchanges with the atmosphere

EVERGREEN

Beck et al. 2011 GCB

Landsat-based deciduous fraction mapping of Alaska and the ABoVE Domain DF is important for energy partitioning, carbon & nutrient dynamics, and climate feedbacks

regional site network .

Experimental Forest.

Landsat-based deciduous fraction mapping of Alaska and the ABoVE Domain DF is important for energy partitioning, carbon & nutrient dynamics, and climate feedbacks

Massey, Goetz, Rogers, Mack et al. (forthcoming)

forest cover

Landsat-derived deciduous fraction map comparison with USGS NLCD 2011

Alaska deciduous fraction 2010

USGS NLCD 2011

High resolution imagery (ESRI 2013)

High resolution imagery indicates we are mapping deciduous cover better than NLCD, in addition to capturing the more continuous nature of forest composition.

Individual tree-based modeling in interior Alaska

Dominant species in the Tanana: pre-climate change and after 100 years of stabilization following climate change (RCP 8.5)

Climate change was initiated at mature forest state (400 years from bare ground initiation) – year 2006

Climate change consisted of 94 years of changing monthly temperature and precipitation (in this scenario both increased) from **2006 to 2100**

Comparisons to pre-climate change conditions were taken from year 600 of simulations (i.e. year 2206)

Climate change was initiated at mature forest state (400 years from bare ground initiation) – **year 2000**

Climate change consisted of 94 years of changing monthly temperature and precipitation (in this scenario both increased) from 2006 to 2100

Comparisons to pre-climate change conditions were taken from year 600 of simulations (i.e. year 2206)

ABoVE Project Goetz-03; Foster et al. (forthcoming)

White spruce and black spruce biomass change (from historical/pre-climate change) after 100 years of stabilization following climate change (RCP 8.5)

White spruce

Quaking aspen

Climate change was initiated at mature forest state (400 years from bare ground initiation) – year 2006

Climate change consisted of 94 years of changing monthly temperature and precipitation (in this scenario both increased) from 2006 to 2100

Comparisons to pre-climate change conditions were taken from year 600 of simulations (year 2206)

Composition and Biomass changes prior to and following Climate change (RCP 8.5)

Species equilibrate for 400 years; Climate changes across years 400-495; Species re-equilibrate years 495-600

Coordinated Field measurements and Airborne Acquisitions

For details visit above.nasa.gov/airborne.html