

Characterizing Uncertainty in Applications of Ecological Models

Jeremy Littell, USGS Alaska Climate Science Center

Summary

- Model output ≠ forecast or prediction the way managers think about those terms
- Outside science, **useful** models are those that make projections **used by** decision makers, managers
- Useful means managing and describing uncertainty in ways that allow model output to be put into the decision context
- That is, action depends on translating <u>output</u> and science into <u>information</u>
- Multiple models "bolted together" is not necessarily a recipe for a *cascade of uncertainty*! IF choices to constrain uncertainty are made in the construction and application of models, then uncertainty in both reality and perception can be decreased.

What's the utility of ecosystem modeling in a global change era?

What's the utility of ecosystem modeling in a global change era?

Increasingly, models built for purely scientific purposes are pressed into service for projecting future conditions relevant to resource management.

Whether those projections are *predictions* or *forecasts* is a key distinction for utility in decision making.

A prediction has clearly stated contingencies; a forecast has a probability.

Most climate and ecosystem models produce *neither*.

Figure 1. A common method of assessing the consequences of climate change for natural systems is a top-down impact assessment, which links, in turn, projections of global climate, regional climate, regional effects, biological effects, and responses.

Snover et al. 2013, Conservation Biology

What's the utility of ecosystem modeling in a global change era?

Increasingly, models built for purely scientific purposes are pressed into service for projecting future conditions relevant to resource management.

Whether those projections are *predictions* or *forecasts* is a key distinction for utility in decision making.

A prediction has clearly stated contingencies; a forecast has a probability.

Most climate and ecosystem models produce neither.

Figure 1. A common method of assessing the consequences of climate change for natural systems is a top-down impact assessment, which links, in turn, projections of global climate, regional climate, regional effects, biological effects, and responses. Snover et al. 2013, Conservation Biology

"I have \$11B of infrastructure to manage and \$11B more to plan. I ask you, how actionable is your science?"

D. Behar, Deputy to the Assistant General Manager, Water Enterprise, San Francisco Public Utilities Commission

"We demand rigidly defined areas of doubt and uncertainty!" - Vroomfondel

"We demand rigidly defined areas of doubt and uncertainty!" - Vroomfondel

....we're scientists!

Projected increases in annual temperature

Mote and Salathé, 2009

Northern Rockies historical and 2001-2099 (color). Heavy lines are ensemble (multiple climate model) averages for B1, A1B, and A2 emissions scenarios.

One rigidly defined view of uncertainty: The Rumsfeldian Taxonomy

- Known knowns the things you know you know
- Known unknowns the things you know you don't know
- Unknown unknowns the things you don't know you don't know

One rigidly defined view of uncertainty: The (Expanded) Rumsfeldian Taxonomy

- Known knowns the things you know you know
- Known unknowns the things you know you don't know
- Unknown unknowns the things you don't know you don't know
- Unknown knowns "the things you do not like to know", e.g., elephants under the rug and gorillas in the room

One rigidly defined view of uncertainty: The (Expanded) Rumsfeldian Taxonomy

- Known knowns the things you know you know
- Known unknowns the things you know you don't know
- Unknown unknowns the things you don't know you don't know
- Unknown knowns the things you do not like to know
- Things you think you know that just ain't so

Science by design addresses these directly and iteratively moves facts from one portion of the taxnomy to others.

Increasingly, the world in which models are developed is not the world in which they are applied.

Traditional Products:

Publications Forecasts Physical system models Theoretical models Case Studies Data

Traditionally Operates in a world of:

Formal planning Regulatory requirements Limited technical resources Hierarchical mgmt. authority Balancing stakeholder interests Risk-averse decision-making

<u>Who</u> will do <u>what</u> differently because you did some science?

Uncertainty, Models, and Adaptation

Whether model output is **<u>useful</u>** depends on where uncertainty comes from, how big it is, and how it is handled.

The way decision makers think about "actionable" – what is possible, what is risky, what is vulnerable, and what to do about it – is based on how large or small they think the uncertainty is.

How do we effectively communicate uncertainty?!?

Sources of uncertainty in climate projections

Climate variability

Emissions scenario uncertainty

Climate model uncertainty

Hawkins and Sutton, BAMS 2009

Managing uncertainty in climate projections in a decision context

- **Choosing scenarios** Multiple scenarios, multiple GCMs or ensemble mean + scenarios?
- **Model skill**: Fidelity to 20th century observations at regional scales?
- **Outliers:** Can models be objectively eliminated, or should all outcomes be considered equally plausible?
- Scale of decision: Spatial and temporal scales of the climate information appropriate to planning or decision making?
- Using scenarios: Models and emission scenarios selected match risk framework (risk tolerant vs. risk averse)?
- **Downscaling:** Is the added detail both necessary and realistic?
- Scale of model linkages: How does the scale of climate information match the ecosystem model being used?

What's important compared to what – clearly, repeatedly, iteratively....and competently.

Ferguson, Daniel B., Jennifer Rice, and Connie Woodhouse. 2014. Linking Environmental Research and Practice: Lessons from the Integration of Climate Science and Water Management in the Western United States.

Model world vs. Decision context

• Model world:

Systems knowledge and target knowledge are rolled into models that describe or project

• Decision context: Projections *can* be used to plan, alter policy, or change management. But *will* they?

Model world vs. Decision context

Boreal forest ecosystem services / resources

• Model world:

Systems knowledge and target knowledge are rolled into models that describe or project

• Decision context: Projections *can* be used to plan, alter policy, or change management. But *will* they?

Northern Rockies Regional Projections, A1B (19 GCMs),

