TROPHIC INTERACTIONS IN AQUATIC ECOSYSTEMS
My first thought about trophic interactions…
STREAM ECOSYSTEMS AND TROPHIC INTERACTIONS

- STReam Experimental Observatory Network (STREON)
- Stream Consumers and Lotic Ecosystem Rates (SCALER)
- Stream Resiliency Research Coordination Network
AQUATIC BIODIVERSITY

• Freshwater biodiversity In the United States:
 • 800 species of fishes
 • 300 species of mussels
 • 300 species of crayfishes
 • 150 species of salamanders
 • 100 species of frogs and toads
 • 500 species of snails

• Over the past 20 years extinction, endangered, threatened or species of concern:
 • 20 % of fishes
 • 45 % of mussels
 • 48 % of crayfishes
 • 20 % of aquatic snails
NUTRIENT INPUTS

From Sobota et al. 2013
Harrison et al. 2010
NUTRIENTS INPUTS AND ECOSYSTEM FUNCTION

From Peterson et al. 1985

- Rapid response of algal biomass
- Increase in bacterial respiration
- Increase in respiration hypothesized to result from DOC from algae
NUTRIENTS INPUTS AND ECOSYSTEM FUNCTION

From Peterson et al. 1985
Deegan and Peterson 1992
Konza-Kings Creek

- Large consumers

+ Large consumers

Common Fish Species of Kings Creek, Konza Prairie Natural Research Area
HYDROLOGY AND STREAM COMMUNITIES

Augusta Creek, MI
Satilla River, GA
Colorado River, CO
McKenzie River, OR

From Poff and Ward 1989
HYDROLOGY AND STREAM COMMUNITIES

From Poff and Ward 1989
Overarching question: *How will chronic nutrient inputs, higher probabilities of droughts and floods, and loss of consumers impact the resistance and resilience of stream ecosystem function?*
STREON Experimental (tentative)

AND = Andrews Exp. Forest; ARC = Arctic; CPC = Caribou-Poker; CWT = Coweeta; GLV = Green Lakes Valley; GPR = Rio Guayanilla; KNZ = Konza Prairie; MAL = Gun Powder Falls; MMW = Middle Mississippi; ORW = Oak Ridge; RBC = Red Butte; SYC = Sycamore Creek; TAL = Talladega Forest; TKL (SNV) = TeaKettle Exp. Forest (Sierra Nevada)
The STREON experiment is designed to study how stream ecosystems respond to eutrophication and the loss of large consumers.

- Simulate chronic nutrient additions and the exclusion of large animals
 - 3 years of pre-experiment observations
 - 7 years of experiment

- Response variables:
 - nutrient spiraling
 - stream metabolism
 - abundance and diversity of stream organisms.
SCALER
Scale, Consumers, and Lotic Ecosystem Rates: Centimeters to Continents

Walter Dodds, Janine Rüegg, Ford Ballantyne, Christina Baker, William Bowden, Kaitlin Farrell, Michael Flinn, Keith Gido, Tamara Harms, Ashley Helton, Jeremy Jones, Lauren Koenig, John Kominoski, Danelle Larson, William McDowell, Samuel Parker, Amy Rosemond, Ken Sheehan, Chao Song, Matt Whiles, and Wil Wollheim
Question 2: How does scaling vary among biomes?
Question 1: How can small-scale experiments be used to understand network scale processes?

Measures of Ecosystem Function
- Metabolism
- Nutrient Uptake
Link stream ecologists with hydrologists, statisticians, modelers, and resource managers

Goal – develop a synthetic understanding of the resistance and resilience of lotic ecosystems to chronic nutrient inputs and changing species diversity.

Planned Activities:
- Hosting four workshops over the next five years
- Developing a web portal to share information
- Hosting a graduate seminar
Tentative themes for the workshops are:

1. Structural equation modeling stream ecosystem responses to top-down and bottom-up drivers with changing climate and land uses
2. Time series analysis to understand long-term patterns and predict change in stream ecosystems
3. Connectivity and metabolism along river continuum
4. Meta-analysis of stream ecosystem response to changing nutrients and biodiversity

Hosting first planning workshop in Portland, Oregon at the Joint Aquatic Sciences Meeting
My first thought about trophic interactions…