A call for inclusive conservation

Heather Tallis, Jane Lubchenco and 238 co-signatories petition for an end to the infighting that is stalling progress in protecting the planet.

An age-old conflict around a seemingly simple question has resurfaced: why do we conserve nature? Contention around this issue has come and gone many times, but in the past several years we believe that it has reappeared as an increasingly acrimonious debate between, in essence, those who argue that nature should be protected for its own sake (intrinsic value) and those who argue that we must also save nature to help ourselves (instrumental value).

Champions of instrumental value contend, among other things, that protecting nature for its own sake alone has failed to stem the tide of species extinction, that conservation support will be broadened by more directly considering other social objectives (such as food security or clean water). By contrast, advocates of intrinsic value assert that ethical arguments for conservation should be sufficient, that partnering with business is selling out to those who create the problem and that social considerations are already central to conservation.

Unfortunately, what began as a healthy debate has, in our opinion, descended into vitriolic, personal battles in universities, academic conferences, research stations, conservation organizations and even the media. We believe that this situation is stifling productive discourse, inhibiting funding and halting progress.

Adding to the problem, in our view, is the issue that this dispute has become dominated by only a few voices, nearly all of them men’s. We see this as illustrative of the bigger issues of gender and cultural bias that also continue to hinder conservation.

The stakes? The future of conservation science, practice and policy. Conservation regularly encounters varied points of view and a range of values in the real world. To address and engage these views and values, we call for more-inclusive representation of scientists and practitioners in the charting of our field’s future, and for a more-inclusive approach to conservation.

EMBRACE DIVERSE VALUES AND VOICES

Women historically have been underrepresented in environmental-science faculty positions and in conservation practice, as in most scientific fields. This disparity is changing globally, but at different rates: more slowly in Asia and more quickly in Latin America and the Caribbean, for example. In the United States, more than half the leadership positions in conservation organizations are now held by women. And on the global stage, women currently hold top positions in many leading efforts, including the Intergovernmental Platform on Biodiversity and Ecosystem Services, the Future Earth science committee, and the International Union for Conservation of Nature. This progress makes the dearth of female voices in the debate about the premise of our profession all the more stark.

The signatories in agreement here — women and men from around the globe — support an equal role for women and for practitioners of diverse ethnicities and cultures in envisaging the future of conservation science and practice.

Together, we propose a unified and diverse conservation ethic; one that recognizes and accepts all values of nature, from intrinsic to instrumental, and welcomes all philosophies justifying nature protection and restoration, from ethical to economic, and from aesthetic to utilitarian. What we propose is not new. This diverse set of ethics has a long-standing history in modern conservation. For...
example, more than 100 years ago, both intrinsic and instrumental values were used in the creation of Yellowstone National Park in Wyoming, and when Californians spurred the broader environmental movement in the United States by using economic studies of the value of birds alongside compelling speeches about the purity and grandeur of nature.

These values need not be in opposition, although they do reflect the hard choices that conservation often faces. They can instead be matched to contexts in which each one best aligns with the values of the many audiences that we need to engage. Those on the side of intrinsic value will argue that by recognizing the many ways in which people benefit from nature, we cheapen nature and miss opportunities to save components of it that have little or no obvious value to people. This is a valid concern, and one of many reasons why we must continue to uphold intrinsic values to audiences who share those values, or may be inspired towards them. However, instrumental values will remain more powerful for other audiences, and should be used in the many contexts where broadening support for conservation is essential.

Clearly, all values will not be equally served in every context. Approaching conservation problems with representative perspectives and a broad base of respect, trust, pragmatism and shared understanding will more quickly and effectively advance our shared vision of a thriving planet. Prominent institutions already embrace multiple voices and values. For example, the field’s signature international treaty, the Convention on Biological Diversity, calls for the conservation of biodiversity, and for the sustainable use and equitable sharing of its benefits. Some countries leading in this area, such as Mexico, Costa Rica and Colombia, have followed suit, capturing these joint interests in their own governing language.

PRACTICAL ACTION
What now? Academic training of conservation scientists should more accurately portray the rich, global history of the field, introducing students to the diverse ways in which nature has been valued and conserved for centuries. More forums at conferences, in journals and on social media are needed to elevate the voices of scientists and practitioners from under-represented genders, cultures and contexts. Conservation organizations and scientists can embrace all plausible conservation actors, from corporations to governmental agencies, faith-based organizations and interested individuals, and advance conservation efforts when they can benefit people and when there is no obvious human-centric goal.

These efforts must be underpinned by a stronger focus on synthesizing and expanding the evidence base that can identify what works and what fails in conservation so that we can move from philosophical debates to rigorous assessments of the effectiveness of actions. And we must encourage the full breadth of conservation scientists and practitioners to engage with the media so that coverage reflects the true range of opinion (for example, the 240 co-signatories listed are ready for interview) rather than the polarized voices of a few. To add your name to this petition, visit diversecounsel.org.

It is time to re-focus the field of conservation on advancing and sharing knowledge in all relevant disciplines and contexts, and testing hypotheses based on observations, experiments and models. We call for an end to the fighting. We call for a conservation ethic that is diverse in its acceptance of genders, cultures, ages and values.

Heather Tallis is lead scientist at the Nature Conservancy in Santa Cruz, California, USA. Jane Lubchenco is professor of marine biology and of zoology at Oregon State University in Corvallis, Oregon, USA. E-mail: htallis@tnc.org


For a full list of co-signatories and further reading on this topic, see go.nature.com/tezttv.

A to-do list for the world’s parks

Experts share their priorities for what must be done to make protected areas more effective at conserving global biodiversity.

BOB PRESSEY
Maximize returns on conservation

Professor, Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University

Protected areas are meant to preserve biodiversity, but practice, measures of progress and targets do not reflect this role. Governments and non-governmental organizations usually concentrate on politically palatable measures, such as numbers of hectares. Measures of progress and targets for protected areas should focus on placing protection where it can make the most difference.

A 2008 study estimated that only 7% of protected forests in Costa Rica would have been lost if not protected (K. S. Andam et al. Proc. Natl Acad. Sci. USA 105, 16089–16094; 2008). These forests, like most protected areas worldwide, are in ‘residual areas’ — those where direct human threats to biodiversity are low, and where ‘protection’ makes little difference. Misleadingly, target 11 of the Convention on Biological Diversity measures progress in percentages of land and sea protected. Meanwhile, the biodiversity of contested places continues to be eroded.

Performance metrics for protected areas should borrow from those in medicine, education and development. These fields all aim to maximize returns on investment. The language of programme evaluators is framed in terms of efficacy: what is the actual outcome of an intervention, compared with the outcome expected from no intervention?

For protected areas, efficacy means...
A call for inclusive conservation (Comment in Supplementary information to: Gretchen Daily, Arkema, Heather Tallis, 16 Center for Penguins as Ocean Sentinels, Department of Biology, University of Washington, Seattle, W A 98195-1800, USA 15 Marine Science Institute, University of California, Santa Barbara, CA 93105, USA 14 Centre for Studies in Complexity, Stellenbosch University, Stellenbosch 7600, South Africa 13 Stockholm Resilience Centre, Stockholm University, Stockholm 10691, Sweden 12 Department of Natural Resource Sciences and McGill School of Environment, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada 11 Centre of Excellence for Environmental Decisions, School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia 10 School of Environmental Studies, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada 9 Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Morelia, Michoacán 5830, Mexico 8 The Natural Capital Project, Woods Institute for the Environment, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA 7 Conservation International, Arlington, VA, 22202, USA 6 The Nature Conservancy, Coral Gables, FL, 33134, USA 5 Global Change Institute, The University of Queensland, St Lucia, Queensland, 4072, Australia 4 Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA 3 Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331, USA 2 Research Institute for the Environment and Livelihoods and Northern Australia National Environmental Research Program Hub, Charles Darwin University, Darwin, Northern Territory, 0909, Australia 1 The Nature Conservancy, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA 115 Liba Pejchar, 114 Carrie Kappel, 113 Perrine Hamel, 112 Sharon Hall, 111 Heather M. Connolly, 110 Brian R. Silliman, 109 Natalia Estrada Carmona, 108 David Vaclik, 107 James E. M. Watson, 106 Leah L. Bremer, 105 Christopher J. Brown, 104 Belinda Reyers, 103 Kirky A. Wilson, 102 Erika Zavaleta, 101 Kristen R. Skjellum, 100 Paul R. Ehrlich, 99 Paolo M. E. Buretta, 98 Tanya J. Padilla, 97 Joana K. Padilla, 96 Natalie Ban, 95 Rebecca Chaplin-Kramer, 94 Jane Lubchenco, 93 Belinda Reyers, 92 Mariana M. P. B. Fuentes, 91 Jonathan W. Moore, 90 Kristy Kroeker, 89 Colin G. Quigley, 88 Belinda Reyers, 87 Joanna L. Nelson, 86 Karen Levy, 85 Anna P. Boersma, 84 Richard J. Hobbs, 83对中国, 82 Meg Lowman, 81 Anna K. Hulsey, 80 Yuta J. Masuda, 79 Anna K. Hulsey, 78 Diana M. Finnegan, 77 Joanna L. Nelson, 76 Sandy J. Andelman, 75 Mary Ruckelshaus, 74 Christine K. Forster, 73 Claire Kremen, 72 John R. McIvor, 71 Beth McKinney, 70 John R. McIvor, 69 John R. McIvor, 68 Christy A. Adams, 67 Christopher J. Brown, 66 Robert L. H. Robinson, 65 E. Stuart Chapin, III, 64 Paul E. Martin, 63 Bernardo J. Brenes, 62 J. Donald McAllister, 61 Robert B. H. Brody, 60 J. Donald McAllister, 59 J. Donald McAllister, 58 J. Donald McAllister, 57 J. Donald McAllister, 56 J. Donald McAllister, 55 J. Donald McAllister, 54 J. Donald McAllister, 53 J. Donald McAllister, 52 J. Donald McAllister, 51 J. Donald McAllister, 50 J. Donald McAllister, 49 J. Donald McAllister, 48 J. Donald McAllister, 47 J. Donald McAllister, 46 J. Donald McAllister, 45 J. Donald McAllister, 44 J. Donald McAllister, 43 J. Donald McAllister, 42 J. Donald McAllister, 41 J. Donald McAllister, 40 J. Donald McAllister, 39 J. Donald McAllister, 38 J. Donald McAllister, 37 J. Donald McAllister, 36 J. Donald McAllister, 35 J. Donald McAllister, 34 J. Donald McAllister, 33 J. Donald McAllister, 32 J. Donald McAllister, 31 J. Donald McAllister, 30 J. Donald McAllister, 29 J. Donald McAllister, 28 J. Donald McAllister, 27 J. Donald McAllister, 26 J. Donald McAllister, 25 J. Donald McAllister, 24 J. Donald McAllister, 23 J. Donald McAllister, 22 J. Donald McAllister, 21 J. Donald McAllister, 20 J. Donald McAllister, 19 J. Donald McAllister, 18 J. Donald McAllister, 17 J. Donald McAllister, 16 J. Donald McAllister, 15 J. Donald McAllister, 14 J. Donald McAllister, 13 J. Donald McAllister, 12 J. Donald McAllister, 11 J. Donald McAllister, 10 J. Donald McAllister, 9 J. Donald McAllister, 8 J. Donald McAllister, 7 J. Donald McAllister, 6 J. Donald McAllister, 5 J. Donald McAllister, 4 J. Donald McAllister, 3 J. Donald McAllister, 2 J. Donald McAllister, 1 J. Donald McAllister
17 Wildlife Conservation Society, Bronx, NY 10460, USA
18 Institute on the Environment, University of Minnesota, Learning and Environmental Sciences 325, St. Paul, MN 55108, USA
19 The Bronson Center, and Virginia Tech, Arlington, VA 22203 USA
20 One Health Institute, University of California, Davis, CA 95616, USA
21 Department of Plant Protection, Faculty of Agriculture, Bogor Agriculture University, Jalan Raya Kampar, Kampus IPB Darmaga, Bogor, Indonesia
22 Sustainability Solutions Initiative, Department of Wildlife Ecology, University of Maine, Orono, ME 04469-5755, USA
23 Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250 USA
24 CSIRO Land and Water, Brisbane, Queensland 4001, Australia
25 Institut de Recherche pour le Développement, UMR EME 212, Centre de Recherche Halieutique Méditerranéenne et Tropicale, 34203 Sète Cedex, France.
26 School of Geography, Planning, and Environmental Management, University of Queensland, Chamberlain Bldg, St. Lucia, Brisbane 4072, Australia
27 Wildlife Conservation Society, North America Program, Bozeman, MT 59715, USA
28 Woods Institute for the Environment, Stanford University, Stanford, CA 94305-5020, USA
29 Center for Conservation Biology, Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
30 Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA
31 Agrobiodiversity and Ecosystem Services Program, Bioversity International, Montpellier, France
32 Embrapa Amazonia Oriental, 60017-970 - Belem, Pará, Brasil
33 USGS Pacific Coastal and Marine Science Center, Santa Cruz, CA 95060, USA
34 Puget Sound Institute, University of Washington, Tacoma, Tacoma, WA 98421, USA
35 Department of Biological and Environmental Sciences and Technologies, University of Salento, Consorzio Nazionale Interuniversitario per le Scienze del Mare, 73100 Lecce, Italy
36 Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
37 Department of Biological Sciences, Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA
38 Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL 60660, USA
39 Department of Biology, University of Maryland, College Park, MD 20742, USA
40 School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
41 Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
42 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 167 77, Agios Kosmas, Greece
43 Earthwatch Institute, Boston, MA 02134, USA
44 Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
45 The Nature Conservancy, New Paltz, NY, 12561, USA
46 College of the Environment, University of Washington, Seattle, WA 98195-5355, USA
47 The Nature Conservancy, Bethesda, MD 20814, USA
48 Center for Environmental Research, Education and Outreach, Washington State University, Pullman WA 99164-6525, USA
49 Berkeley, CA, 94708, USA
50 Resource Ecology Group, Wageningen University, 6700 AA, Wageningen, The Netherlands
51 University of Washington Joint Institute for the Study of the Atmosphere and Ocean, Alaska Fisheries Science Center, NOAA Fisheries, Seattle, Washington 98115, USA
52 Department of Ecology, Biosciences Institute, S. Paulo University, 05508-090, S. Paulo, Brazil
53 Environmental Consultant, North Vancouver, BC, V7G 1H7, Canada
54 Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
55 Wildlife Conservation Society, Fiji Country Program, 11 Māafu Street, Suva, Fiji
56 National Center for Ecological Analysis and Synthesis, Santa Barbara, California 93101, USA
57 Biology Program, Bard College, Annandale-on-Hudson, New York, NY 12504, USA
58 Mpala Research Centre, Nanyuki, Kenya
59 Julie Ann Wrigley Global Institute of Sustainability and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
60 Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
61 Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
62 Lendület Ecosystem Services Research Group, Centre for Ecological Research, MTA, Budapest, Hungary
63 Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, USA
64 Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
65 Department of Biology, University of Washington, WA 98195-1800, USA
66 Institute for the Study of Environment and Society, and Department of Ecology & Evolutionary Biology, Brown University, Providence, RI 02906, USA
67 Rollins School of Public Health, Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
68 Institute of Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA
69 Centre for Biodiversity and Environment Research, University College London, London, WC1E 6BT, England
70 Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
71 Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima 18, Peru
72 Environmental Studies and Sciences Department, Santa Clara University, Santa Clara, CA 95053, USA
73 Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
74 The Nature Conservancy, Altamonte Springs, FL 32714, USA
75 School of Development, Azim Premji University, PES Institute of Technology Campus, Pixel Park, Electronics City, Bangalore - 560100, India
76 The Nature Conservancy, Arlington VA, 22203, USA
77 Lund University Centre for Sustainability Studies, P.O. Box 170, SE-221 00, Lund, Sweden
78 Department of Biology, Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA, 94920, USA
79 School of Integrative Biology, University of Illinois at Urbana-Champaign, University of Illinois, Urbana, IL 61801, USA
80 Nicholas Institute for Environmental Policy Solutions and Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
81 Department of Natural Resources and Environmental Management, University of Hawai‘i Manoa, Honolulu, HI 96822, USA
82 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
83 Earth to Ocean Research Group, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
84 National Socio-Environmental Synthesis Center, Annapolis, MD 21401 USA
85 Department of Biology and Management of Aquatic Resources, Centro Nacional Patagónico CONICET, Av. Rivadavia 1917 (C1033AAJ) Ciudad Autónoma de Buenos Aires - República Argentina
86 Department of Geography, Florida State University, Tallahassee, FL 32306, USA
87 Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
88 School of Biological Sciences, University of Queensland, St Lucia, Brisbane 4072, Australia
89 Research Professor, Odum School of Ecology, The University of Georgia, Athens, GA. 30602-2602, USA
90 Natural Resources and the Environment, Council for Scientific and Industrial Research, Stellenbosch, 7599 South Africa
91 Natural Resource Ecology & Management Department, Iowa State University, 339 Science II, Ames, Iowa, 50011, USA
92 Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kāne‘ohe, Hawai‘i 96744, USA
93 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
94 University of Wisconsin, Center for Limnology, Madison, WI 53706, USA
95 Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
96 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
97 The Nature Conservancy, Seattle, WA 98101, USA
98 Florida International University, Southeast Environmental Research Center (OE 148) & Department of Biological Sciences, Miami, FL, 33199, USA
99 College of Science and Mathematics, University of the Virgin Islands, St Thomas, USVI 00802, USA
100 Department of Zoology, University of Otago, Dunedin, New Zealand
101 Extension and Outreach, Federal University of Bahia, 40170-115, Salvador, Bahia, Brazil
102 Biology Institute, Federal University of Bahia, 40170-210 Salvador, Bahia, Brazil
103 Biology Department, University of Central Florida, Orlando, FL 32816, USA
104 The Nature Conservancy, Boulder, CO 80302, USA
105 The Nature Conservancy, University of North Carolina, Institute of Marine Sciences, Morehead City, NC 28557, USA
106 The Nature Conservancy, University of Rhode Island, Narrangansett Bay Campus, Narrangansett, RI, 02882-1197, USA
107 Catalan Institute for Water Research, 17003 Girona, Spain
108 Agroecology, Department of Crop Sciences, Georg-August University, Göttingen, Germany
109 Department of Environmental Sciences, Emory University, Atlanta, GA, 30322, USA
110 Resources for the Future, Center for Management of Ecological Wealth, Washington, DC 20036, USA
111 Department of Anthropology, Indiana University, Bloomington, IN, 47405, USA
112 Center for Limnology, University of Wisconsin-Madison, Madison, WI, 53706, USA
113 Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
114 Biology Program, Universidad del Rosario, Bogota D.C., Colombia
115 School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, U.S.A.
116 CSIRO Land and Water Flagship, Glen Osmond, South Australia, 5064, Australia
117 Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA
118 Bioversity International, Montpellier Cedex 5, France
119 Social–Ecological Systems Laboratory, Department of Ecology, Universidad Autónoma de Madrid, 28049, Madrid, Spain
120 Wageningen University, Environmental Systems Analysis Group, Wageningen, Netherlands
121 International Human Dimensions Program–United Nations University, Bonn, Germany
122 University of Washington, School of Aquatic and Fishery Sciences, Seattle, Washington, 98195-5200, USA
123 The Nature Conservancy, Minneapolis, MN 55415
124 Department of Economics, Andrew Young School of Policy Studies, Georgia State University, Atlanta, USA
125 World Wildlife Fund (WWF), Washington, DC 20037, USA
126 The Nature Conservancy, West End, QLD 4101, Australia
127 Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento 38123, Italy
128 International Center for Tropical Agriculture, Nairobi, Kenya
129 The Nature Conservancy, Ft. Collins, CO, 80524, USA
130 The Nature Conservancy, Bozeman, MT, USA
131 Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
132 Energy and Resources Group, University of California, Berkeley, California 94720 USA
133 The Nature Conservancy, Chicago, IL 60603, USA